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Abstract 
 
Current information on land cover, forest type and forest structure for the Virgin Islands is 
critical to land managers and researchers for accurate forest inventory and ecological 
monitoring.  In this study, we use cloud free image mosaics of panchromatic sharpened 
Landsat ETM+ images and decision tree classification software to map land cover and forest 
type for the Virgin Islands, illustrating a low cost, repeatable mapping approach.  Also, we 
test if coarse-resolution discrete lidar data that are often collected in conjunction with digital 
orthophotos are useful for mapping forest structural attributes. This approach addresses the 
factors that affect vegetation distribution and structure by testing if environmental variables 
can improve regression models of forest height and biomass derived from lidar data.  The 
overall accuracy of the 29 forest and non-forest classes is 72%, while most the forest types 
are classified with greater than 70% accuracy.  Due to the large point spacing of this lidar 
dataset, it is most appropriate for height measurements of dominant and co-dominant trees (R2 
= 72%) due to its inability to accurately represent forest understory.  Above ground biomass 
per hectare is estimated by its direct relationship with plot canopy height (R2 = 0.72%).  

Keywords:  Land cover, decision tree software, discrete lidar, forest structure, regression 
modeling, Virgin Islands. 

1 INTRODUCTION 
Information on land cover, forest type and forest structure for the Virgin Islands is limited to 
maps of ecological zones and photo interpreted land cover [1,2] and relatively few forest 
inventory plots.  The lack of current land cover data and robust techniques for updating that 
data, and the sparseness of forest inventory plots relative to the number of different forest 
types, pose challenges to land managers and researchers in ecologically vulnerable 
subtropical environments.  These challenges are made more acute in Caribbean environments, 
because the interaction between trade winds and steep topographic gradients cause forest 
types to change over short distances [3] and high rates of disturbance lead to variable forest 
structure.  In this study, datasets of land cover and forest type are derived from satellite 
imagery with decision tree software, illustrating a low cost, repeatable approach for creating 
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such data. Although decision tree classification is becoming common in remote sensing, only 
a few studies use decision trees for detailed forest mapping of subtropical islands [4-6]. 
 

This study also addresses the characterization of forest structure with airborne light 
detection and ranging (lidar) when inventory data are sparse.  Lidar adds a third (z) dimension 
to the spatial description of forest types with accurate estimates of vegetation height and 
above ground biomass [7].  No prior research has addressed the quantification of lidar derived 
forest structure in the Virgin Islands.  Data describing indices of forest structure such as 
height and biomass can provide important information such as indicators of forest age, 
species richness and habitat.   
 

Forest distribution and structure in the Virgin Islands has been modified for hundreds of 
years by both natural and human caused disturbances, including hurricanes and human 
exploitation.  Prior to European colonization, indigenous peoples such as the Carib first 
cleared forest for food, shelter, and boat building materials.  In the 1600 and 1700’s Danish 
and British settlers arrived and began converting forest to intensive agriculture that included 
coffee, sugar cane and tobacco [8,9,10,11].  As a result, most old growth forest was cleared 
and has recovered as fragmented secondary forests after the gradual abandonment of 
agriculture through to the early twentieth century.  The forest clearing had lasting impacts on 
forest structure, ecosystem function and species composition, including the introduction and 
extinction of exotic and endemic species [12].  
 

Increased pressure from urban development has led to additional forest clearing in the 
Lesser Antilles [5] and Puerto Rico.  The spatial pattern of forest clearing is often influenced 
by proximity to existing urban areas, roads and topography [13,4].  Islands such as St. 
Thomas [14] and Tortola have also experienced urban growth at the expense of forested areas 
over the last decade.  About 65% of St. John is protected by the US Park Service including 
much of its semi-deciduous (including semi-evergreen) and deciduous forests.  However, the 
unprotected low elevation dry forests on that and other islands, which have been shown to be 
important habitat for many avian species, are considered endangered and susceptible to 
increasing developmental pressures [15].   

 
The overall goal of this study is to develop an approach for characterizing the structure of 

varied subtropical island forest formations when available inventory data are relatively sparse.  
To accomplish this goal, we developed three main objectives.  The first objective is to test an 
improvement to a previously developed approach for using Landsat image mosaics to map 
land-cover and forest types in persistently cloudy, complex tropical landscapes with decision 
tree classification software [4-6,16,17].  The improvement is that we use panchromatic-
sharpened image mosaics to increase spatial resolution in the resulting maps.  We also test 
whether the approach is applicable to a large area, the Virgin Islands, which includes many 
islands.  The second objective is to test if the coarse-resolution (shot spacing of 2.76m) 
discrete lidar data that are often collected in conjunction with digital orthophotos are useful 
for mapping forest structural attributes, including height and biomass, over the steep 
environmental gradients present on the islands of St. John and St. Thomas.  Also, this study 
tests whether integrating Landsat ETM+ satellite imagery and environmental variables with 
the lidar data can improve models of forest structural attributes.  Whether the large point 
spacing of such coarse resolution lidar will be adequate to accurately sample and model forest 
structure parameters has not been tested.  Also unknown is whether the range of 
physiognomic types found across these islands will complicate the estimates of forest height 
and biomass.  Several studies have shown that large footprint scanning lidar accurately 
predicts forest structure, including canopy height, basal area and above ground biomass in 
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Douglas fir/western hemlock forests [18,19].  Other studies accurately model forest metrics 
with discrete lidar, focusing on small tracts of homogeneous forest stands and small foot-print 
sensors [20].  Accurate estimates of forest structural attributes using regressions have been 
successfully performed such as height [21,22], aboveground biomass [23,24], and crown 
diameter [25,26].  Lidar based biomass has been estimated for a variety of forest types 
including, but not limited to, temperate mixed deciduous coniferous [25,23,27], temperate 
deciduous [24] and tropical rain forests [28].  The third objective is to summarize forest 
structure of the predicted forest structural attributes for each mapped forest class.  This step 
allows us to characterize forest height and biomass for different forest types on St. John and 
St. Thomas.  The datasets generated in the project will support other studies in the Virgin 
Islands, including avian monitoring surveys and the Forest Stewardship Program [29]. 

2 METHODS 

2.1 Study area 

The US and British Virgin islands (18°20’N, 64°40’W) are a part of the Caribbean’s Lesser 
Antilles and are composed of six major and 40+ minor islands and cays.  The major islands in 
the US territory include St. Thomas, St. John and St Croix, while the main islands in the 
British territory include Tortola, Virgin Gorda and Anegada (Figure 1).  The islands have a 
combined area of about 50,000 ha, with subdued to rugged topography and elevations ranging 
from just below sea level in some wetlands to over 500 m on the island of Tortola.  The 
climate is mostly subtropical, with a hot and humid rainy season that extends from May to 
November and a dry season that is tempered by trade winds.  The geology of the islands 
consists of alluvial, sedimentary, volcanic and limestone strata.  Ecological zones on the 
islands include Subtropical Moist and Dry forest sensu Holdridge [1,30].  

Lidar Study Area 
St. John and St. Thomas were selected as the lidar study area based on the availability of lidar 
data coverage.  The island of St. John (18º22’N, 64º40’W) and the island of St. Thomas 
(18º21’N, 64º55’) are about 5,000 and 7,200 hectares in area, respectively, and consist of 
mountainous topography with elevations ranging from sea level to 387 m on St. John and 471 
m on St. Thomas.  The woody vegetation on both islands is similar to other islands in the 
Virgin Islands and includes both late and early stage successional forests.   
 

In 1956, the US Park Service established the Virgin Islands National Park (VINP).  
Protecting about 65% of St. John, it includes the island’s interior high elevation semi-
evergreen and deciduous forests. The long standing reserve status has helped protect most of 
the island’s forests from development, creating one of the largest contiguous expanses of 
forest in the Lesser Antilles. The VINP provides unique research opportunities to study the 
island’s diverse ecology and establishes a template for monitoring mature successional forest 
structure.  In contrast, the forests of St. Thomas which make up about 69% of the island has 
not received protection status and developmental pressures and impacts can be observed 
island-wide.   

2.2 Landsat Imagery and Reference Data  
A land-cover and forest type map for the US and British Virgin Islands was created by 
supervised classification of Landsat ETM+ imagery using decision tree analysis software.  An 
image mosaic for about the year 2000 was created from Landsat scenes of various dates.  The  
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Fig. 1.  Map of the study area. 
 
reference scenes for the mosaic were World Reference System 2 Path/Row 004/047-048, both 
dated 27 Mar 00.  The scenes used to fill cloud-masked or edge areas in Path/Row 004/047 
were dated 02 Nov 01 (Path/Row 003/047), 17 Sep 99, 02 Aug 00, and 25 Jan 01.  The scene 
used to fill cloud-masked areas in Path/Row 004/048, was dated 25 Jan 01.  Cloud obstruction 
in the reference image was 20.9 % before and 5.3% after the cloud removal and mosaic 
process.  The 30-m multispectral bands for each scene were first cloud-masked and then 
matched to the reference scene with regression tree normalization [31].  This technique 
models the relationship between co-located pixels from different image dates and estimates 
new image digital numbers (DNs) to fill in the cloud and cloud-shadow masked areas of the 
reference scene.  In addition, the technique reduces atmospheric and phenological differences 
that occur with multi-date image mosaics [5].  Likewise, the 15-m panchromatic band for 
each scene was also matched to the reference panchromatic band with regression tree 
normalization models based only on the panchromatic bands.  The matched panchromatic 
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image parts were then mosaicked, and the panchromatic mosaic was then used to pan-sharpen 
the 30-m mosaic of the multispectral bands.  Principal components transformation was chosen  
to merge the native 30 m Landsat multispectral image bands (bands1-5, 7) for each scene with 
the 15 m panchromatic band (band 8).  It was chosen based on 1) results from preliminary 
tests of other resolution merging methodologies (Brovey and Multiplicative) available in 
ERDAS Imagine, and 2) other studies [32-34] that have concluded that the principle 
components transformation method provides increased spatial resolution without degrading 
spectral discrimination.   
 

Ancillary data were used to create an island-wide predictor variable dataset to assist in the 
classification of image pixels. Adding geographic data ancillary to satellite imagery improves 
classification of land cover and forest types by reducing spectral confusion among vegetation 
classes [35,36], including in Caribbean island landscapes [6].  Topographic variables derived 
from United States Geological Survey (USGS) 30 m digital elevation models (DEM) for the 
US territory and 90 m Shuttle Radar Topography Mission (SRTM) elevation datasets 
resampled to 30 m for the British territory included elevation, slope and aspect [37,38].  
Climatic variables included mean annual precipitation and temperature [39]. Variables 
derived from USGS Digital Line Graphics (DLG) for the US islands and scanned topographic 
maps for the British islands at a scale of 1:24,000 that were registered to the image mosaic 
include distance to primary and secondary roads, distance to streams and ravines, and 
distance to coastlines [40].  The ancillary predictor data was spatially co-registered with the 
cloud free image mosaic and stacked with the Landsat ETM+ reflectance bands 1-5, 7, and 
two band indices, resulting in an 18 band image mosaic for the classification.  The band 
indices included the Landsat ETM+ image bands to produce the normalized difference 
vegetation index (NDVI) and 4/5 band ratio, which are useful indictors of vegetation vigor 
and forest structure [41-43].  
 

Field surveys in 2005 and consultation with experts enabled us to discern land-cover and 
forest type in reference imagery and the classification image mosaic.  The reference imagery 
included 1 m IKONOS panchromatic sharpened imagery for the US and British Islands and 
additional 1m color digital ortho quarter quads (DOQQ) for the US islands.  Land cover and 
forest type were then identified in the satellite imagery.  Forest type was identifiable in both 
the reference imagery and the Landsat imagery by color, tone and texture as well as spatial 
indicators including aspect and elevation.  Difficulties distinguishing forest type were 
encountered in areas that were transitional between semi-deciduous and seasonal evergreen 
forest.  Field survey data proved useful in identifying these transitional areas in the reference 
imagery. 

 
Training data for the image classification model was derived using the reference imagery 

and field data collected in the 2005 reconnaissance survey.  About 25 to 250 multiple pixel 
polygons were distributed for each class throughout the extent of the study area.  Training 
data samples collected over a large inter-island extent ensured thorough representation of 
each class and provided a full range of variability for the class.  For example, there are often 
spectral variations in similar forest types where the image scenes were radiometrically 
matched in the cloud elimination procedure [44].  Target classes included sunlit and 
shadowed woody vegetation types, sunlit and shadowed green and senescent pasture, 
mangrove, wetland, and non-forested classes (Table 1).   

 
We used the woody vegetation classification system designated at the formation level 

(Table 1) that [45] adapted for Landsat imagery classification from [46].  Areas with less than  
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Table 1. Classification schema definitions including forest and non-forest classes. 
 

Forest, forest/shrub, woodland and 
shrubland ( Dry and Moist) 

Forest is defined as lands with > 25% cover of tree 
that co-dominate with shrubs 

Drought Deciduous Woodland 25-60% woody canopy cover with understory of 
grasses and forbs affected by grazing 

Drought Deciduous Young Forest 
 and Forest Shrub  

Young drought deciduous secondary forest with  
Leucaena leucocephala and Acacia muricata common 

Drought Deciduous Xeric Coastal  
Shrubland with Succulents 

Very dry drought deciduous shrubland dominated by 
succulents and exposed soil and rock  

Deciduous, Evergreen  Mixed Forest 
 and Shrubland with Succulents 

Deciduous, drought deciduous and evergreen forest 
and shrub species (succulents common)  

Evergreen Coastal Shrubland Shrubland with > 75% evergreen species including 
hemi-sclerophyllous and sclerophyllous species 

Semi-Deciduous Forest and Forest  
and Forest Shrub (Includes Semi-
Evergreen Forest) 

Stands with 25-75% deciduous woody canopy species 

Semi-Deciduous Gallery Forest Stands with 25-75% deciduous woody canopy species 
located in drainages 

Seasonal Evergreen Forest  
and Forest Shrub 

Stands with ≥75% evergreen woody canopy species 
(may drop leaves during drought) 

Seasonal Evergreen Young Forest  
and Forest Shrub Young seasonal evergreen secondary forest  

Seasonal Evergreen Gallery Forest Stands with ≥75% evergreen woody canopy species 
located in drainages  

Seasonal Evergreen Forest  
with Coconut Palm 

Stands with ≥75% evergreen woody canopy species 
dominated by coconut palm  

Forested Wetland  

Mangrove Mangrove forest  

Seasonally Flooded Woodland Disturbed forested wetland with 25-60% woody 
canopy cover  and seasonal flooding or soil saturation  

Agricultural land, pasture, hay, 
abandoned agriculture, grass  

Herbaceous Agriculture (Cultivated 
Lands) 

Intensive agriculture and cultivated lands where 
activity is recent  

Pasture, Hay, Abandoned Agriculture or 
other Grassy Areas 

Areas with < 25% woody vegetation cover / recreation 
fields 

Golf Course Golf course 
Coastal Grassland Coastal grassland with < 25% woody vegetation  
Non-forested and wetland  

Emergent Wetland Emergent wetland permanent 
Dry Salt Flats  Dry salt flats including mud flats 
Quarries Active or inactive quarries 
Coastal Sand and Rock Coastal sand (beaches) and coastal rock outcrops  
Interior Rock (Virgin Gorda boulder) Virgin Gorda rock outcrops (boulders) 
Urban or built-up land  

High-Medium  Density Urban Land with > 80% urban features such as buildings, 
roads and impervious surfaces 

Low-Medium Density Urban Land with as low as 10-15% urban features and  other 
land-cover types such as pasture or forest 
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25% woody vegetation cover are classified as pasture and grasslands; these include natural 
grasslands, abandoned agriculture and grazed or ungrazed pasture.  Subtropical drought 
deciduous forest is defined by the Federal Geographic Data Committee (FGDC) as having at 
least 75% deciduous woody species [47].  Semi-deciduous forest [5] includes stands with 25-
75% deciduous woody canopy species and includes semi-evergreen forest.  Drought 
deciduous woodland has forest and shrub with a canopy cover of 25-60 % and an understory 
of grasses and forbs dominated by grazing or fire.  Young leguminous secondary forest and 
shrub formations consisting primarily of Leucaena leucocephala and Acacia muricata were 
identified at lower elevations where recent or ongoing disturbance has occurred.  Seasonal 
evergreen forest consists of at least 75% evergreen woody canopy species that may drop 
leaves during drought.  Deciduous, evergreen and mixed forest with succulents includes a 
matrix of deciduous, drought deciduous and evergreen forest and forest shrub species 
containing succulents including Stenocereus peruvianus, Leuchtenbergia principis and 
Opuntia tricantha.  Drought deciduous xeric coastal shrubland with succulents consists of 
very dry drought deciduous shrubland dominated by succulents and exposed or rocky soil.  
Evergreen coastal shrubland consists of a least 75% of evergreen species such as hemi-
sclerophyllous Coccoloba uvifera and may include other sclerophyllous coastal shrub species.  
Low density urban land includes land with as low as 10-15% urban features and may include 
a mix of other land-cover types such as pasture, or forest.  High-to-medium density urban 
land has greater than 80% urban features including buildings, roads and impervious surfaces. 

2.3 Classification and Image Interpretation 
See5 software (www.rulequest.com), a data mining program using decision tree algorithms, 
was used to predict land-cover and forest type pixel values [48].  In the last several years, 
decision tree classification techniques have been applied to a wide range of classification 
problems and have proven to be valuable to the classification of remote sensing imagery due 
to their flexibility, simplicity and computational efficiency [16,17].  First, a 10 trial adaptive 
boosting option was employed to improve the overall accuracy and reduce error of the 
decision tree algorithm by combining many individual classifiers (decision trees) into a single 
combined classifier [39].  Second, the default global pruning option was used to reduce the 
likelihood of over fitting the tree to the training data.  The pruning process removes parts of 
the decision tree with relatively high error rates [49].  
 

 Manual editing of confused classes was required to correct for residual confusion 
between urban, barren and pasture areas.  Several areas of drought deciduous young forest 
and drought deciduous woodland that were spectrally confused with pasture and grass were 
also manually edited.  In addition, herbaceous agriculture on St. Croix was manually 
delineated, which accounted for 279 ha, or 0.01% of the total area mapped.  Coastal grassland 
was manually recoded from pasture, including on small cays.  Manual recoding was also 
necessary to delineate some drought deciduous young forest mostly on the island of St. Croix, 
and some boundaries between semi-deciduous and seasonal evergreen forest located on St. 
Thomas, St. John and Tortola.  Coastal sand and rock was recoded throughout the 
classification.  Finally, pixels were manually recoded in several high elevation areas of St. 
Thomas representing low density urban and a few areas of semi-deciduous and seasonal 
evergreen gallery forest.  Areas in the image mosaic that were cloudy in all available Landsat 
images were manually interpreted from 1 m IKONOS panchromatic sharpened imagery and 
1m color DOQQs (about 0.34% of the total mapping area). 

2.4 Classification Accuracy Assessment 
A stratified random sample was used to create 50 validation points for each land-cover class. 
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Each accuracy assessment point was verified with high resolution reference imagery and 
assigned a land-cover class.  The reference imagery included IKONOS 1 m panchromatic 
sharpened imagery and 1m color DOQQs.  An error matrix was created for each mapped class 
to estimate the overall percentage of correctly classified pixels, statistics for producer and  
user’s accuracy and the Kappa coefficient, which is an indicator of the accuracy of chance 
agreement between classes [50,51].  Producer’s accuracy is the proportion of correctly 
classified accuracy assessment estimates and user’s accuracy estimates the proportional 
assignment of pixels to a correct class [5]. 

2.5 Lidar Data Processing 
Discrete lidar data were collected during January and February 2004 by 3001 Inc. under 
contract to the US Army Corps of Engineers, using a Leica Geosystems ALS 40 sensor [52].  
Geodetic control was established by a static GPS network covering the lidar survey area of 
Puerto Rico and the US Virgin Islands.  In addition to data collection, Real-Time Kinematic 
GPS surveys were conducted to establish a network of ground truth data for statistical 
comparisons with the lidar data.  The results of the comparisons indicate a Vertical Root 
Mean Square Error (RMSEz) of 9.26 cm on level smooth surfaces [52].  The spatial extent of 
the data in this study includes St. John and St. Thomas and surrounding small islands and 
cays.  The lidar data were collected in conjunction with digital photos and used to generate 
and improve digital elevation models (DEM) for orthorectification.  The raw point cloud data 
were provided by the contractor in .xyz format with a 2.76 m shot spacing and consists of 
multiple return measurements including first, last and intermediate return values.   
 

The data were filtered into ground (minimum elevation) and non-ground returns to create 
a bare earth DEM and forest height estimates. TIFFS (Toolbox for Lidar Data Filtering and 
Forest Studies) was used to process the lidar data for extracting a bare earth DEM [53].  The 
filtering method used by TIFFS to create the DEM used a progressive morphological filter for 
removing non-ground measurements from the lidar elevation data [54].  Morphological 
filtering composes operations based on set theory to extract non-ground features from an 
image.  The two fundamental operations include dilation and erosion which are used to 
enlarge (dilate) or reduce (erode) the size of features in continuous surfaces.  By gradually 
increasing the window size of the filter and using elevation thresholds, the measurements of 
non-ground features such as vegetation and buildings are eliminated while topographic data 
are preserved [54].  The morphological filter algorithm used in [55] incorporates the 
assumption that non-ground objects such as buildings exhibit abrupt elevation changes while 
topographic elevation is gradual and continuous.  This method is adaptive to local terrain and 
is applicable to rugged topography [53].  Once non-ground features were removed, terrain 
points were extracted from the approximated surface and a 5 m DEM was interpolated.  
Finally, the DEM tiles were mosaicked to form a continuous surface of the study area.   

 
Programs written in IDL (Interactive Data Language, ITTVIS, 2008) were used to create a 

canopy height dataset from the non-ground elevation data [56].  The corrected DEM provided 
a minimum elevation surface which was subtracted from non-ground elevation lidar data to 
estimate canopy height.  The resulting output was a continuous multiband image mosaic of 
canopy height variables with a 30 m pixel resolution.  The image bands were of canopy 
height statistics including: (1) height percentiles (P-tile) below which certain percentages of 
data fall; (2) shot return profiles (SRP) that quantify the number of shots returned from 5 m 
height bins; (3) quadratic mean height (QMH) the root mean square of canopy lidar point 
height [57]; (4) maximum height; and (5) mean height (Table 2).  Other areas where clouds 
obstructed the land and lidar measurements were treated as “no data”.  The cloud obstructed 
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area was about 180 hectares or 1.4% of the study area and was confined mostly to the island 
of St. John.  In addition, a water mask created from USGS 1:24,000 scale DLG data 
representing coastlines was used to mask ocean elevation measurements [40]. 
 
Table 2. USDA Forest Service, Forest Inventory and Analysis data, lidar and environmental variables. 
 

FIA Plot Variables Units/Type Definition 

Average Height of all Trees 
(AHT) m Average height of all trees  

Average Height of 
Dominant/Co-dominant Trees 
(HDCD) 

m Average height of dominant and co-dominant trees 

Above Ground Biomass per 
Hectare (AGBH) Mg/ha Above ground live biomass per hectare 

Crown Volume (CV) m3 

Sum of the volume of all crowns for trees with a 
d.b.h. ≥ 12.5 cm.  Estimated as an ellipsoid using 
crown ratio, tree height and crown radius in two 
perpendicular directions (V= 4pi/3)abc  

Lidar Variables   

Minimum Elevation m Minimum lidar surface elevation 
Maximum Height m Maximum lidar canopy height  

Mean Height m Mean lidar canopy height 
Quadratic Mean Height 
(QMH) m Root mean square height of the lidar points 

Height Percentiles (P-tile) m Height at which a certain percent of data fall 
below 

Shot Return Profile (SRP) m Number of shots returned from 5 meter height bins 

Environmental Variables   

Landsat Bands 1-5, 7 Integer Landsat image reflectance bands 

Landsat NDVI, 4/5 Ratio Float Normalized Difference Vegetation Index, Band 
4/Band 5 

Aspect Degrees Aspect expressed in degrees 

Sine Aspect Radians Sine of aspect in radians 

Cosine Aspect Radians Cosine of aspect in radians 

Curvature Integer Slope geometry indicating convex or concave 
geometry  

Slope  Degrees Slope expressed in degrees 

Slope Position Integer Ridge or valley of any point in landscape 

Degrees from North Degrees Degrees from 0 (north) 

Landsat Classification Nominal Land-cover and forest type thematic values 

Precipitation mm/year Total annual precipitation  

Temperature mm/year Mean annual temperature  
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2.6 Forest Parameter Modeling 
Regression models of field estimated canopy height and biomass were developed from lidar 
estimates of canopy height and environmental variables.  The plot data was collected by the 
USDA Forest Service Forest Inventory Analysis (FIA) Caribbean program on St. John and St. 
Thomas in 2004 [58] providing field based forest structural information (Table 2).  Each plot 
consists of four 7.3 m radius circular subplots in which all woody vegetation with a diameter 
at breast height (DBH, measured at 1.37 m) of ≥ 12.5 cm is surveyed.  A single microplot 
with a 2.1 m radius nested within each subplot is used to survey woody vegetation saplings 
with a DBH between 2.5 and 12.5 cm [59].  Summary statistics were generated at the plot and 
subplot level.  For the plot level data, circular and square plot extraction schemes were used 
to extract the lidar mosaic data using a 90 m window.  In addition to the lidar data, this study 
examined if other explanatory variables such as ancillary environmental data improved the 
regressions and fit of the models of structural data (Table 2).  Ancillary data included Landsat 
reflectance bands (bands 1-5, 7) and band indices (NDVI and the ratio of bands 4 and 5), total 
annual precipitation and mean annual temperature (Helmer, Daly and Plume, unpublished 
data), land-cover and forest type, and elevation and elevation derivatives such as slope, 
aspect, and sine and cosine of aspect expressed in radians.  Two other topographic indices 
were included: slope position, which calculates the extent that each point is similar to a ridge 
or valley position as values 0 through 100 [60], and standard curvature, which is a measure of 
slope geometry indicating convex or concave topography [61].  A 24 band image stack 
containing the lidar canopy height statistics and the environmental variables was assembled, 
and data were extracted at every FIA plot and subplot location.  The sample size for the plot 
and subplot level data was 18 and 72 observations respectively.  
 

We developed stepwise regression models in JMP software (www.sas.com) and used the 
resulting regression equations to create images of predicted values with a 30 m pixel 
resolution for average height of dominant and co-dominant trees (HDCD), and above ground 
biomass per hectare (AGBH) on the islands of St. John and St. Thomas [62] (Table 3).  Forest 
structural statistics were then calculated using a zonal operation for the predicted maps of 
HDCD and AGBH and related to the areas of the forest types mapped in the land-cover 
classification for St. John and St. Thomas.  

3 RESULTS 

3.1 Land-cover and Forest Type Classification 
The land-cover and forest type classification consisted of 29 classes (Figure 2 and Appendix 
A and B).  After manual editing and interpretation of residual cloudy areas the overall 
accuracy was 72%. The Kappa coefficient of agreement was 0.76 ± 0.01, which indicates a 
significant agreement between the reference and map classifiers.  The main sources of error 
were confusion between low density and high-medium density urban lands, and between low 
density urban lands and pasture.  Most of the forest types were classified with greater than 
70% accuracy (Appendix A).  However, some confusion occurred between semi-deciduous 
forest and seasonal evergreen forest.  Also, deciduous, evergreen and mixed forest and 
shrubland with succulents showed some confusion with semi-deciduous forest, drought 
deciduous young forest shrub and woodland classes. 
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Table 3.  Stepwise regression equations for forest structural response variables using Forest Inventory 
Analysis fully forested plot level data for the islands of St. John and St. Thomas.  The predicted models 
are significant at p< 0.05 and 18 observations.  Superscript symbols indicate significance levels of 
overall model:   o (p≤0.0001), + ( p≤0.001),  Δ (p≤0.05) 
 

Response variable 

Explanatory data 
 (lidar / 

environmental 
variables)1 Predicted model RMSE 

Adj. 
R2 

Average height of 
dominant/co-

dominant trees 
(HDCD) 

SRP 2, SRP 6, 
PRECIPo 

HDCD = -14.03+ 10.67(SRP2) + 
24.10(SRP6) + 0.00015(PRECIP) 

     
0.78 

 
0.73 

Above ground 
biomass per hectare 

(AGBH) mapped 
SRP 5Δ AGBH = 58.29 + 220.17(SRP5) 22.78 0.36 

Above ground 
biomass per hectare 

(AGBH) mapped 
Observed HDCD+ AGBH = -22.92 + 

14.27(Observed HDCD) 15.29 
 

0.722 
 

Above ground 
biomass per hectare 

(AGBH) mapped 
Predicted HDCDΔ AGBH = -9.89 + 12.37(Predicted 

Formula HDCD) 22.69 0.372 

Average height of all 
trees (AHT) 

MEANH, COSAP, 
LSB 1, 5, 8Δ 

AHT = 3.14 + 0.35(MEANH) + 
0.69(COSAP) - 0.13(LSB1) - 
0.084(LSB5) + 0.48(LSB8) 

0.75 0.59 

Crown volume (CV) SRP 2, SRP 6, 
COASP+ 

CV = 87.44 – 646.612(SRP4) + 
1959.04(SRP6) + 76.69(COASP) 51.48 0.77 

Height Penetration 
Index (HPI) 

ASPECT, SLOPE, 
SLPPOS, PRECIPΔ 

HPI = -0.87 - 0.0006(ASPECT) – 
0.005(SLOPE) + 0.002(SLPPOS) 

+ 1.28e-5(PRECIP) 
0.09 0.56 

1 Lidar variable definitions: SRP (Lidar Shot Return Profile), PRECIP (Average Annual Precipitation mm/yr), 
MEANH (Lidar Mean Canopy Height), COSAP (Cosine of Aspect in radians), LSB (Landsat TM Band (band 8 = 4/5 
ratio)), SLOPE (Slope in degrees), ASPECT (Aspect in degrees), SLPPOS (Slope position). 
2 Linear equations are stated in R2  
 
 
Confusion among these classes can be explained by similarities in deciduous and drought 
deciduous forest shrub and woodland species.  Finally, some confusion occurred between 
pasture, drought deciduous woodland and drought deciduous young forest shrub.  Pasture 
often exhibits confusion with drought deciduous forest types in Landsat classifications due its 
composition of up to 25% drought deciduous woody vegetation species [5].  The mapped 
combined closed woody vegetation (closed forest and associated classes) for the seven main 
islands and their associated islets and cays, was 34,175 ha, which encompassed about 67.7% 
of the total mapped island area (Appendix A).  Pasture, hay, abandoned agriculture or other 
grassy areas was the second most abundant class representing 12.2% of the total mapped area. 
The total urban and developed land area was about 6,367 ha in 2000 (Appendix B). 
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Fig. 2.  Land cover and forest type classification for the United States and British Virgin Islands 
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3.2 Lidar Data Processing 

The TIFFS algorithm efficiently filtered the large volume of point cloud data, although the 
processing required manual parameter tuning and multiple iterations to produce an adequate 
DEM.  The mean shot spacing was one shot per 2.76 m. Mean canopy height ranged between 
2.0 and 16.9 m with a mean and standard deviation of 5.4 and 2.2 m.  The mean canopy 
height image with outliers removed shows a realistic representation of mature moist forest 
stands and short drought deciduous and xeric forest types.  The minimum and maximum 
value of the elevation image before correction was -82.4 and 970.7 m with a mean and 
standard deviation of 14.0 and 48.3 m respectively.  After correction using the TIFFS 
software, the minimum and maximum bare earth DEM values were -4.094 and 470.5 m with 
mean and standard deviation of 3.3 and 68.6 m.  Negative values resulted from ocean shots 
that were not completely removed in the masking process due to minor edge matching 
differences in the water mask and the lidar data. 

3.3 Estimating and Modeling Forest Structural Parameters 
Models at both the plot and subplot levels that used only lidar indices were statistically 
significant but did not explain as much variance as other studies using lidar (adjusted R2 for 
plot level HDCD = 0.49 and RMSE 1.07 m; adjusted R2 value for subplot level HDCD = 0.18 
and RMSE 1.79 m).  Further data analysis indicated the existence of a regular pattern between 
the regression residuals, canopy closure and environmental conditions. To quantify these 
effects, we calculated a height penetration index as an indication of the distance that the lidar 
penetrated through the forest canopy.  The height penetration index is defined as average 
height of dominant and co-dominant trees divided by lidar maximum height.  Values of this 
index near 1.0 represent canopies where most returns are from dominant and co-dominant 
trees; values greater than 1.0 indicate higher level of penetration into the canopy.  A stepwise 
regression of the height penetration index and related environmental variables show a strong 
dependence (adjusted R2 = 0.56, Table 3).  The environmental variables that were significant 
in the regression include aspect, slope, slope position and precipitation and are a major 
component of environmental gradients found in Caribbean landscapes that influence forest 
types and structure. Given the direct relationship between environmental variables and this 
characteristic of forest canopy structure, environmental variables were added as dependent 
variables. 
 

Models of forest structural parameters that included environmental variables were 
significant at both the plot and subplot level, but plot level relationships explained more 
variance.  For example, the adjusted R2 value was 0.40 for the model of subplot HDCD but 
0.73 for the plot level model.  At the plot level, plot extraction using circular and square 
sample areas both provided statistically significant models, but the circular plot scheme 
explained more variance (adjusted R2 for HDCD circular plot = 0.73; adjusted R2 for HDCD 
square plot = 0.59).   
 

The relationships between the lidar and environmental variables, and the inventory plot 
level measurements of HDCD are strong, but most of the environmental variables tested were 
insignificant.  Regressions of HDCD with lidar shot return profile (SRP) variables and 
precipitation explain high levels of variance, with an adjusted R2 of 0.73 (Table 3, Figure 3).  
The RMSE of 0.78 m for HDCD is 11.35% of the response mean of 6.87 m which is a 
relatively low error.  The regression equation for HDCD is dependent on the explanatory 
variables shot return profile 2 (SRP2), shot return profile 6 (SRP6) and the environmental 
variable total annual precipitation resulting in the following multiple regression model with 
all explanatory variables significant at p<0.05 (Table 3):  
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   HDCD = 14.03 + 10.66SRP2 + 24.10SRP6 + 0.00015PRECIP     (P < 0.0001)    

 

 

 (1) 
   

The predicted model for inventory HDCD explained a greater amount of variance and 
produced a more reasonable height map than did the equation for predicted Average Height of 
all Trees variable (adjusted R2 = 0.59, Table 3).  This suggests that the coarse resolution lidar 
is more sensitive to the height of the dominant and co-dominant trees than the average height 
of all trees and can be attributed to the inability of the lidar returns to account for the 
variability of the forest understory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
    

Fig. 3. Graphs of predicted versus observed forest structural variables 
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The relationship between the lidar data, environmental variables, and the inventory plot 
level measurements of AGBH explain only 36% of the variance.  No environmental variables 
were significant and SRP 5 was the only significant explanatory variable in overall model 
with a p-value of 0.01 (Table 3).  The model did not adequately map low biomass values in 
dry forest and forest shrub formations and did not consistently map biomass values in 
adjacent tall and short forested areas.  Instead, an alternative approach that uses the strong 
relationship between AGBH and HDCD in the inventory plot dataset was applied.  A 
bivariate fit between inventory HDCD and AGBH results in the following linear regression 
model explaining 72% of the variation with RMSE (15.29 m) (Table 3, Figure 4). 

 
  AGBH = -22.92 + 14.27HDCD      (P <0.0001)                                       (2) 
 

The map of the AGBH model shows the same trends as the predicted map of HDCD due 
to their direct linear dependence.  Biomass estimates generally increase with an increase in 
elevation and canopy height (Figure 4).  A few areas of predicted biomass located primarily 
in the island’s high elevation ridge topography were estimated beyond the maximum range of 
the observations that form the regression model and exceeded values reasonable for 
subtropical moist forest in the region.  A threshold was determined based on the largest 
biomass estimate (141.3 Mg/ha) from FIA plot data located in St. John.  Predicted estimates 
exceeding the threshold were reclassified in the map to this maximum value. Larger biomass 
estimates are not reported on St. John, though dense mature moist forest stands in the 
drainages could show values exceeding the threshold.  Modeled biomass values that exceed 
the range of reasonable observations occur on high elevation ridges; a location where biomass 
is unlikely to be near the FIA maximum.  [63] summarized biomass estimates of Caribbean 
dry and moist forest from recent studies showing values for the Cinnamon Bay watershed 
measured after hurricane Hugo in 1989 to be about 131.5 tons/ha.  Finally, [64] presents pre-
hurricane Gilbert average biomass estimates for Rancho San Filipe, Mexico of 132 Mg/ha in 
forests similar to St. John, but consisting of drier forest types.  In addition, a few low 
elevation areas consisting of mostly drought deciduous xeric coastal shrubland with 
succulents were modeled in the AGBH map with negative values due to the y intercept of the 
model at about 1 m.  To correct this error, a minimum biomass estimate threshold was applied 
to the negatives values based on a minimum HDCD height of 1.2 m. 
 

The relationship between the lidar data, environmental variables, and the inventory plot 
level measurements of Crown Volume explain 81% of the variance with RMSE (51.48 m).  
Although, crown volume was accurately estimated in the regression models, the predicted 
maps provided a poor representation of this variable throughout the study area showing large 
non-contiguous areas of negative and erroneous values at both high and low elevations and 
therefore not included as a final predicted map.   

3.4 Forest Structural Summaries 
Forest structural summaries derived from the predicted maps for HDCD and AGBH show 
height and biomass statistics for the islands of St. John and St. Thomas and include mapped 
drought deciduous, xeric and coastal classes located on the surrounding small islands and 
cays (Tables 4A and B).  The mean height and biomass estimates are similar to FIA field 
estimates of moist forest types.  Height and biomass estimates for seasonal evergreen, and 
semi-deciduous forest show a slight increase in the maximum and mean forest height and 
total biomass in St. John compared to St. Thomas in protected areas.  This result may show 
the effect of the protected status of seasonal evergreen and semi-deciduous forest within the  
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Fig. 4.  Map of predicted average height of dominant and co-dominant trees (HDCD) and above ground 
biomass per hectare (AGBH) for the islands of St. John and St. Thomas. 
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VINP where these larger height values are identified.  Drought deciduous xeric coastal 
shrubland and evergreen coastal shrubland has the smallest mean HDCD and AGBH 
estimates and show reasonable values for the short shrubland classes.  Mean HDCD estimates 
for the largest dry forest formation, deciduous evergreen mixed forest and shrubland with 
succulents was 4.4 m for St. John and 3.0 m for St. Thomas with mean AGBH estimates of 39 
Mg/ha and 21 Mg/ha respectively.   
 
 
 
 
Table 4A.  Forest structural summaries for average height of dominant and co-dominant trees for the 
mapped forest types on St. John and St. Thomas including surrounding small islets and cays.  Slight 
discrepancies in forest type area between the predicted lidar maps and the land-cover classification are 
due to “no data” masks in the lidar data. 
 

Average height of 
dominant and co-dominant 

trees (HDCD) (m) 
St. John St. Thomas 

Forest formation mapped Min Max Mean STD Min Max Mean STD 

Drought Deciduous Woodland - - - - 1.3 6.9 3.4 1.8 

Drought Deciduous Young Forest  
and Forest Shrub 1.9 11.0 4.3 1.5 0.1 12.2 3.1 1.7 

Drought Deciduous Xeric Coastal 
Shrubland with Succulents 1.3 9.1 2.7 1.4 0.0 10.8 2.0 1.4 

Deciduous, Evergreen  Mixed 
Forest and Shrubland, with 
Succulents 

1.3 13.9 4.4 1.6 0.0 12.2 3.0 1.6 

Evergreen Coastal Shrubland 1.1 9.5 2.9 1.3 0.0 7.8 2.3 1.5 

Semi-Deciduous Forest and 
Forest Shrub 1.5 15.6 6.2 1.4 0.6 13.6 4.8 1.4 

Semi-Deciduous Gallery Forest 2.2 12.5 5.9 1.6 1.7 11.4 5.4 1.3 

Seasonal Evergreen Forest and 
Forest Shrub 4.0 16.1 7.5 1.2 2.9 13.1 6.6 1.3 

Seasonal Evergreen Young Forest 
and Forest Shrub 5.5 8.6 6.0 1.1 4.0 8.3 4.5 1.1 

Seasonal Evergreen Gallery 
Forest 3.4 15.5 7.3 1.5 2.1 13.0 6.2 1.2 

Seasonal Evergreen Forest with 
Coconut Palm 3.7 10.7 7.4 1.5 1.5 10.1 5.8 1.4 

Mangrove 1.4 9.4 4.8 1.6 0.0 9.8 2.7 1.9 

Seasonally Flooded Woodland 1.9 9.2 4.4 1.5 1.3 10.7 3.7 2.2 
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Table 4B.  Forest structural summaries for above ground biomass per hectare for the mapped forest 
types on St. John and St. Thomas including surrounding small islets and cays.  Slight discrepancies in 
forest type area between the predicted lidar maps and the land-cover classification are due to “no data” 
masks in the lidar data. 
 

Above ground 
biomass per hectare 
(AGBH)  

St. John 
(Mg/ha) 

St. Thomas 
(Mg/ha) 

Both 
islands 

Forest formation mapped Min Max Mean STD Min Max Mean STD Total 
(Gg) 

Drought Deciduous 
Woodland - - - - 1 75 27 24 0 

Drought Deciduous Young 
Forest and Forest Shrub 4 134 39 21 0 141 24 22 131 

Drought Deciduous Xeric 
Coastal Shrubland with 
Succulents 

0 108 17 18 0 132 11 16 34 

Deciduous, Evergreen  
Mixed Forest and 
Shrubland, with 
Succulents 

0 141 39 23 0 141 21 20 1,057 

Evergreen Coastal 
Shrubland 0 112 19 18 0 88 14 18 22 

Semi-Deciduous Forest and 
Forest Shrub 1 141 65 20 0 141 46 20 2,426 

Semi-Deciduous Gallery 
Forest 8 141 61 22 1 140 54 19 65 

Seasonal Evergreen Forest 
and Forest Shrub 34 141 84 17 18 141 71 19 1,088 

Seasonal Evergreen Young 
Forest and Forest Shrub 55 100 77 15 34 95 62 15 4 

Seasonal Evergreen Gallery 
Forest 25 141 81 20 7 141 66 18 262 

Seasonal Evergreen Forest 
with Coconut Palm 30 130 81 21 1 121 59 20 14 

Mangrove 0 111 45 23 0 118 19 25 43 

Seasonally Flooded 
Woodland 4 108 40 21 1 129 31 31 5 

 

4 DISCUSSION 

4.1 Land-cover Classification Techniques 
The use of decision tree classification techniques to map land cover and forest types in 
subtropical environments has been highly successful in past studies [17,4,5]. This study uses 
the techniques tested in previous work to create the first Landsat ETM+ land-cover and forest 
type classification for the US and British Virgin Islands.  Unique to this study is that for the 
first time we created 15-m panchromatic-sharpened cloud-free mosaics and used them in a 
classification to simultaneously map land-cover and forest types over a large inter-island 
extent.    
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The classification approach provided several advantages over traditional techniques in this 
study area.  First, the Principal Components transformation for creating 15 m panchromatic 
sharpened Landsat imagery was effective for increasing the spatial resolution of the Landsat 
multi-spectral bands. The resulting imagery enhanced the ability to discern sparsely vegetated 
surfaces, urban features in low density urban areas and linear features such as riparian 
corridors.  However, difficulty in distinguishing areas of less than a few pixels, like very 
small forest patches, small clearings, or man-made structures in forest still proved difficult 
due to the moderate resolution of the panchromatic sharpened imagery.   

 
The second advantage of this approach was the utility of the mostly cloud-free image 

mosaic for training data collection and classification.  The technique devised by [6] provided 
a repeatable method for replacing the cloudy areas with images from different dates in which 
vegetation phenology is generally normalized to the base scene.   This process makes training 
data collection in the cloud-filled areas easier by providing a single image mosaic with minor 
differences in image tone [5]. 
 

4.2 Estimating and Modeling Forest Structural Parameters 
Stepwise regression was effective for estimating canopy height, as measured in FIA plot data, 
from lidar canopy height estimates and environmental variables.  Testing different multiple 
regression models showed that the large point spacing of the coarse resolution lidar is most 
suitably modeled at the plot level, with a 90 m window circular plot extraction design.  In 
addition, the large point spacing of the lidar data is most appropriate for height measurements 
of dominant and co-dominant trees, due to the inability to accurately measure forest 
understory.  This limitation is the most likely reason why the models of above ground 
biomass per hectare were inaccurate.  A significant portion of the biomass in Caribbean 
landscapes is located in the forest understory and contributes greatly to overall biomass 
estimations.  The proportion of biomass contribution decreases with an increase in average 
tree height and is calculated to be about 94% based on a FIA plot with an HDCD of 4.1 m and 
24% for a FIA plot with a HDCD of 10.9 m.  This assumption is further supported by a 
stepwise regression using lidar and environmental variables to estimate field measurements of 
above ground biomass that don’t include the biomass contribution measured on microplots 
(trees and shrubs with diameters < 12.5 cm).  The regression to estimate biomass without the 
microplot contribution was significantly related to lidar SRP 1, SRP 6, QH and Landsat TM 
band 1, explaining 81% of the variance compared to only 36% of the variance for AGBH 
with scaled micro plot.  This supports the conclusion that the coarse resolution of the lidar 
data is more sensitive to the larger dominant forest structure located in the upper canopy. 
 

The regression equation for the “Height Penetration Index” and the importance of 
environmental variables for predicting forest structure suggests that canopy structure varies 
substantially with environmental conditions in this study area.  Field observations and photo 
interpretation show how forest structure on these islands changes with aspect and elevation, 
which also influence solar input, wind, and climate.  Because of these interactions, 
estimating/mapping forest structure in Caribbean environments may require stratification of 
field plots by forest type, which will increase the cost of field work for these studies by the 
number of strata. In this study, which used FIA data collected with systematic sampling, we 
did not have this variety of sites across the main environmental gradient.  An alternate 
sampling scheme should allow the appropriateness of using environmental variables in this 
way. 
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The HDCD and AGBH models yield reasonable maps of those variables for St. John and 
St. Thomas across the range of elevations, showing a trend of increasing canopy height and 
biomass with an increase in elevation (Figure 4).  Field observations and reference data 
confirm the mapped results, which show taller forest stands associated with higher elevations 
as well as slopes and drainages sheltered from prevailing winds and solar radiation.  Canopy 
height and biomass estimates on windward south and southeast aspects are smaller than those 
on lee slopes.  While most low lying areas with relatively short forest types are accurately 
predicted in the HDCD model, several short forest types estimated adjacent to coastal areas, 
including drought deciduous xeric shrubland with succulents and evergreen coastal shrubland, 
have scattered pixels that exceed reasonable heights.  This result may be due to isolated large 
trees, land-cover classification errors, or lidar height errors from non-forest features.  Also, a 
few of the large watershed drainages in the predicted maps show taller forest stands and 
larger biomass estimates than have been identified in FIA surveys and reference imagery, 
while some of the watershed drainages at lower elevations depict height estimates that may be 
too short (Figures 2 and 4).  This discrepancy may be caused by high density forest structure 
and the inability of the lidar to penetrate the canopy to estimate accurate minimum elevation 
data or the lack of multiple returns for the lidar data in some areas.  Flat urban features such 
as recreation fields, golf courses, and the St. Thomas airport runway as well as some pasture 
are predicted as zero height in the maps, although urban features such as buildings depict 
reasonable height estimates.   
 

The forest structural summaries provide a quantitative overview of the average height and  
biomass of the forest types in the study area.  Seasonal evergreen and semi-deciduous forests 
including gallery forests, which represent the dominant moist forests on St. John, and St. 
Thomas, had the largest mean height and biomass.  Semi-deciduous forest on both islands 
accounted for the largest total combined biomass.  These moist forest types contain the tallest 
forest stands and greatest biomass, providing an indicator of structure, species richness and 
habitat suitability, and highlighting their importance for protection status.  Mean maximum 
height and biomass for seasonal evergreen forest and semi-deciduous forest are slightly larger 
on St. John compared to St. Thomas, especially for the seasonal evergreen forests that are 
well represented under protection status (Table 4A and B).  In contrast, drought deciduous 
xeric coastal shrubland with succulents and evergreen coastal shrubland forest types depict 
the smallest mean height and biomass estimates.  Low elevation deciduous evergreen mixed 
forest and shrubland with succulents represents the largest biomass estimate for the dry 
(drought deciduous) forest types.  Incidentally, in the Caribbean, the unprotected low 
elevation dry forests represent the greatest danger of deforestation due to increasing 
developmental pressure and are considered critical habitat for many endemic vegetation 
species and important habitat for Neotropical migratory birds [65].   
  

Prior to this study, applications for low density lidar data include topographic modeling, 
feature extraction and floodplain and coastal mapping [66,67].  For example, the Louisiana 
Statewide Lidar Project was initiated due to increased flood loss rates experienced by the 
FEMA National Flood Insurance Program and provides low cost lidar derived high resolution 
topographic data to update floodplain maps [67].  The project incorporates the Leica 
Geosystems ALS 40 lidar mapping system used in this study with 3 m point spacing and the 
subsequent acquisition of aerial photography to develop products pertaining to floodplain 
mapping at a regional and watershed scale.  While the use of coarse resolution discrete lidar 
to map topographic features is known, this study shows new applications for this type of data 
providing a cost effective technique to map forest structure in a subtropical environment that 
can be applied to forestry applications in other settings. 
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5 CONCLUSION 
Decision tree classification using cloud free image mosaics of panchromatic sharpened 
Landsat ETM+ images proved effective for mapping land cover and forest types in the Virgin 
Islands providing more detail than previous mapping efforts.  The overall accuracy of the 29 
forest and non-forest classes was 72%, with most of the forest types classified with greater 
than 70% accuracy.  The mapped combined closed woody vegetation for the seven main 
islands and their associated islets and cays, was 34,175 ha, which encompassed about 67.7% 
of the total mapped island area.   
 

The coarse resolution discrete lidar data accurately modeled forest structure including 
average height of dominant and co-dominant trees, average height of all trees and above 
ground biomass per hectare on the islands of St. John and St. Thomas, where forest types vary 
dramatically with topography and environmental factors.  However, due to the large point 
spacing, the lidar data is more indicative of upper canopy dominant and co-dominant tree 
height as opposed to the average height of all trees.  The data did not completely account for 
variability in the forest understory.  This limitation prevents accurate biomass estimates using 
a stepwise regression approach due to lack of important understory contributions of woody 
vegetation.  However, as this study concludes, biomass can be estimated by its direct 
relationship with canopy height.   

 
This study shows that mapping forest height and biomass can be performed from coarse 

resolution discrete return lidar sensors in Caribbean landscapes.  The resulting quantification 
of forest structure enables better characterization of the forest types from a passive optical 
image classification.  In addition, this study shows that regression modeling of forest height 
and biomass can be performed using limited plot data that does not represent the complete 
range of height values found in the forest types.  Another major advantage of this type of lidar 
data is the relatively low cost of data acquisition, because this type of data are often collected 
in conjunction with high resolution airborne digital photos.  Additional studies are necessary 
to further test how field plot sampling design may improve the models.  This may include 
stratification of field plots by forest type, accounting for a comprehensive range of heights for 
each environmental condition.  However, this approach will increase the cost of field work 
based on the number of strata assigned. 
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Appendix A.  Forest and non-forest areas including the User’s and Producer’s accuracies for the 2000 
U.S. Virgin Islands land-cover and forest type classification.  Area totals rounded to integer values 
(Area totals include small islands and cays associated with major islands). 
 

Forest and non-forest  
classification name 

User’s 
Accuracy1 

(%) 

Producer’s 
Accuracy1 

(%) 

St. 
Croix 
(ha) 

St. 
John 

   (ha) 

St. 
Thomas 

(ha) 

Total 
Area 
(ha) 

Forest, forest/shrub, woodland and 
shrubland        

Drought Deciduous Woodland 63 81 409 0 1 554 

Drought Deciduous Young Forest 
and Forest Shrub  70 54 2974 190 211 3499 

Drought Deciduous Xeric Coastal 
Shrubland with Succulents 73 62 93 85 160 473 

Deciduous, Evergreen  Mixed 
Forest and Shrubland, with 
Succulents 

84 60 6153 1558 1794 9649 

Evergreen Coastal Shrubland 82 79 117 44 101 423 
Semi-Deciduous Forest  
      and Forest Shrub 77 65 1770 1584 2587 6083 

Semi-Deciduous Gallery Forest 74 90 528 41 64 797 
Seasonal Evergreen Forest 84 72 0 783 453 1392 
Seasonal Evergreen Young Forest 

and Forest Shrub 62 88 0 1 6 157 

Seasonal Evergreen Gallery Forest 76 85 128 175 147 611 
Seasonal Evergreen Forest with 

Coconut Palm 78 95 1 11 8 193 

Forested Wetland       
Mangrove 83 66 185 48 105 487 
Seasonally Flooded Woodland 59 81 0 8 4 152 

Urban or built-up Land       
High-Medium  Density Urban 78 78 2747 80 1040 4023 
Low-Medium Density Urban 68 67 399 219 798 1551 
Agricultural Land, Pasture hay 
abandoned agriculture or other 
grassy areas  

      

Herbaceous Agriculture –  
Cultivated Lands1 86 100 275 0 0 461 

 Pasture hay abandoned agriculture or  
other grassy areas (i.e. soccer fields) 74 55 5173 54 261 5617 

Golf Course 89 95 86 0 28 298 
Coastal Grassland 70 83 53 17 39 262 
Non-forested and Wetland       
Emergent Wetlands 66 89 12 1 17 185 
Dry Salt Flats (Includes mud flats) 76 81 135 9 2 303 
Quarries 94 98 62 0 28 282 
Coastal Sand  79 89 104 38 35 345 
Coastal Rock  61 87 61 96 242 547 
Interior Rock (Virgin Gorda boulder) 74 89 0 0 0 163 
Bare Soil (including bulldozed land) 78 89 37 5 16 225 
Salt Pond 90 75 232 42 20 459 
Surface Water 80 97 61 1 3 242 

1User’s and producer’s accuracies include both US and British Virgin Islands
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Appendix B.  Forest and non-forest areas for the 2000 British Virgin Islands land-cover and forest type 
classification.  Area totals rounded to integer values (Area totals include small islands and cays 
associated with major islands).   
 

Forest and non-forest  
classification name 

Anegada 
(ha) 

Jost Van 
Dyke 
(ha) 

NPCG1 

  (ha)  
Tortola 

(ha) 

Virgin  
Gorda 
(ha) 

Total 
Area 
(ha) 

Forest, forest/shrub, woodland and 
shrubland        

Drought Deciduous Woodland 643 0 0 1 8 652 
Drought Deciduous Young Forest and 

Forest Shrub  440 157 69 454 109 1229 

Drought Deciduous Xeric Coastal 
Shrubland with Succulents 28 103 162 68 209 570 

Deciduous, Evergreen  Mixed Forest 
and Shrubland, with Succulents 841 422 464 2044 808 4579 

Evergreen Coastal Shrubland 544 12 28 90 82 756 
Semi-Deciduous Forest and Forest 

Shrub 0 156 30 1824 637 2647 

Semi-Deciduous Gallery Forest 0 3 0 29 22 54 
Seasonal Evergreen Forest 0 0 0 633 38 671 
Seasonal Evergreen Young Forest and 

Forest Shrub 0 0 0 149 0 149 

Seasonal Evergreen Gallery Forest 0 0 0 87 0 87 
Seasonal Evergreen Forest with 

Coconut Palm 0 0 1 4 3 8 

Forested Wetland       
Mangrove 91 4 2 68 10 175 
Seasonally Flooded Woodland 0 0 0 10 0 10 

Urban or built-up Land      0 
High-Medium  Density Urban 6 5 3 303 47 364 
Low-Medium Density Urban 107 28 12 426 147 720 
Agricultural Land, Pasture hay 
abandoned agriculture or other 
 grassy areas  

      

Herbaceous Agriculture –  
Cultivated Lands1 0 0 0 5 0 5 

 Pasture hay abandoned agriculture or  
other grassy areas (i.e. soccer fields) 78 31 63 376 135 683 

Golf Course 1 0 0 0 0 1 
Coastal Grassland 7 35 47 22 40 151 
Non-forested and Wetland       
Emergent Wetlands 0 0 0 3 0 3 
Dry Salt Flats (Includes mud flats) 581 1 3 11 2 598 
Quarries 0 0 0 11 4 15 
Coastal Sand  98 10 18 36 25 187 
Coastal Rock  9 67 165 128 107 476 
Interior Rock (Virgin Gorda boulder) 0 0 1 0 20 21 
Bare Soil (including bulldozed land) 0 0 1 16 3 20 
Salt Pond 514 1 7 44 5 571 
Surface Water 2 1 1 5 1 10 

1 NPCG (Norman, Peter, Cooper, Ginger islands) 
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